Float Layout and Economic Modeling Program

Presentation to the

Alaska Association of Harbormasters and Port Administrators

Mike Fisher

October 13, 2005

Presentation Agenda

- Background of the model
- Planning for the harbor
- Harbor planning model
- Optimizing your decision
- Update on the Harbor Economic Impact Model

Background of the Model

- This model was developed for the City of Unalaska.
- The purpose:
 - Estimate the cost and revenues associated with the Little South America harbor
 - Present the information to the City Council in an interactive manner

Planning for the Harbor

Factors to consider:

- Space available
- Types and sizes of vessels served
- Identify subsidy levels for certain vessel classes
- Objectives:
 - Maximize revenue
 - Accommodate the waiting list
 - Provide slips for specific vessels (local, etc.)

City of Unalaska LSA Harbor Revenue Model Model Summary

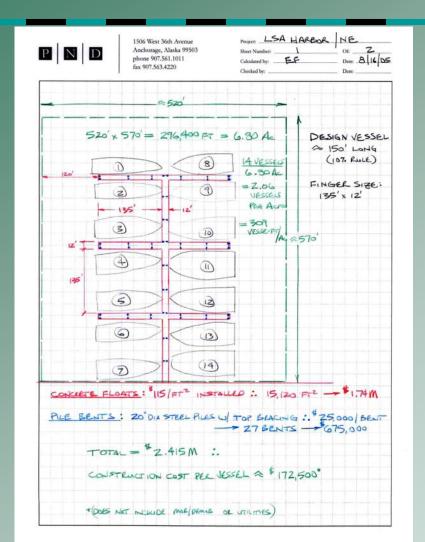
Harbor Area	
Area	16.803 acres

Vessel characteristics					
Length Range (ft)	100-150	80-99	60-79	40-59	0-40
Length Midpoint (ft)	125	90	70	50	30
Design slip length (ft)	150	99	79	59	40
Vessels/acre	2.00	4.39	6.74	11.81	25.12
Capital cost per vessel for floats/piles	172,500	81,471	51,878	28,936	13,300
Daily revenue per vessel	91.30	45.65	6.30	4.45	2.59
Average number of days in use	365	365	365	365	365
Percent with prepayment	0%	0%	50%	75%	100%
Prepayment discount	50%	50%	10%	10%	10%

Number of Vessels						
Length Midpoint (ft)	125'	90'	70'	50'	30'	
Design slip length (ft)	150'	99'	79'	59'	40'	Total
Number	25	10	9	5	5	54
Maximum (Full Allocation)	33	73	113	198	422	
Area required	12.523	2.277	1.336	0.423	0.199	16.758
		Area remaining (must be greater than zero!)				

The output then looks like this:

Cost and Revenue Estimates							
	125'	90'	70'	50'	30'	Total	
Capital Cost (floats and piles)	4,313,000	815,000	467,000	145,000	67,000	5,807,000	
Annual Revenues	833,000	167,000	20,000	8,000	4,000	1,032,000	
Capital cost/revenues	5.178	4.880	23.350	18.125	16.750	5.627	

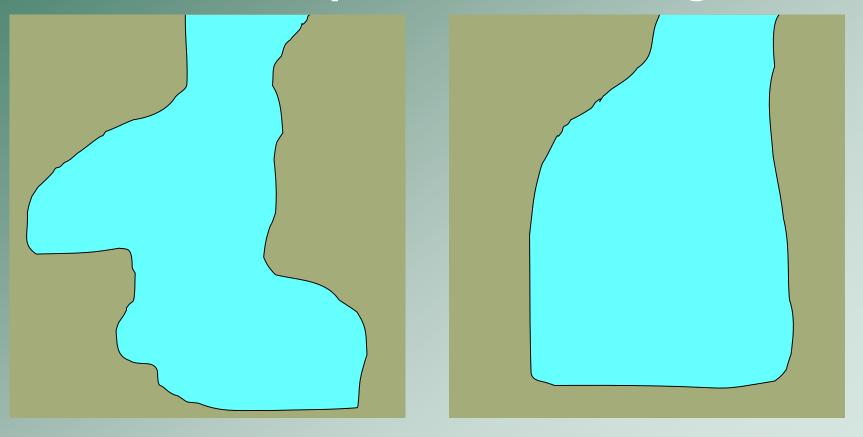


Underlying assumptions are:

City of Unalaska LSA Harbor Revenue Model Assumptions

	Midpoint Length (ft)						
Characteristics	150	125	90	70	50	40	30
Acre/vessel	0.485437					0.03937	
Space/length^2 (calc)	2.16E-05					2.46E-05	
Space/length^2 (est)	2.16E-05	2.23E-05	2.32E-05	2.38E-05	2.43E-05	2.46E-05	2.49E-05
Design slip length	150	150	99	79	59	40	40
Acre/vessel (est)	0.485437	0.500938	0.227662	0.148408	0.084695	0.03937	0.039811
Cost per vessel	172,500					13,300	
Cost/length^2 (calc)	7.667					8.313	
Cost (est)	172,500	172,500	81,471	51,878	28,936	13,300	13,300
Construction Type	Concrete	Concrete	Timber	Timber	Timber	Timber	Timber

	Anchorage, Alaska 99503 phone 907.561.1011	Sheet Number:	2	
	phone 907.561.1011			Of 2
	fax 907,563,4220	Calculated by:	EF	Date: 8/16/06
	fax 907.363.4220	Checked by:		Date:
	F126	ER FLOAT SE 160' = 24.0 4 VESSELS = 0.55 Ac	EL: 36')	0.55 Ac.
TIMBER FLOR	TS: 60 FTE INST	muro: Z	310 FT =-	≠ 138,6∞
PILES: 12.	75" DIA STEEL INSTAL	LED: \$4,700	ENH, 104	PILES - 47,000
т	DTAL = \$186,000	5		
Co	NSTRUCTION COST F	per vessel		oo*
*(0	ORS HOT INCLUDE IN	seldenas or	wirmes)	



Caveats:

The model is intended to provide only a rough estimate of how many vessels can fit in an area. Vessel allocations developed with the model may not layout properly. The model uses average areas required for vessels to fit into the harbor and floats. However, these areas may not provide sufficient space for navigating and nesting.

Harbor shape affects the design:

Caveats:

The spacing and construction methods and materials are general and do not account for wind, waves, and other factors that influence design. The model provides estimates for informational purposes only, and the actual harbor needs to be designed properly.

Optimizing Your Decision

- Advantages of spreadsheet models:
 - Ability to change inputs and see the result
 - Solver or other tools to optimize decision

Optimizing Your Decision

- Solver can be used to optimize the decision.
- Examples:
 - Maximize revenues
 - Minimize capital cost
 - Minimize leftover space*
 - All of the above, with constraints
 - * careful!

Availability of the Model

- http://www.harbormodel.info
 - Features the harbor economic impact model
 - Will see about providing a basic planning model at that location

Harbor Economic Impact Model

- There has been renewed interest in the Harbor Economic Impact Model (HEIM).
- Are you interested in helping to update the data for your area?
- If so, please contact:
 - ADOT&PF: Ruth Carter or Vic Winters
 - John Stone, City of Juneau Port Director

Questions

Questions?

Acknowledgements:

Alvin Osterback
Port Director, City of Unalaska
for allowing us to develop the model and
granting the permission for us to share it

Eric Fontaine, PND
for developing the planning-level
drawings

Contact information:

Mike Fisher
Northern Economics, Inc.
michael.fisher@norecon.com
http://www.northerneconomics.com/

Harbor Model: http://www.harbormodel.info/